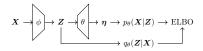
Boosting heterogeneous VAEs via multi-objective optimization NeurIPS 2021 Workshop "Your Model is Wrong: Robustness and misspecification in probabilistic modeling"

Adrián Javaloy, Maryam Meghdadi, Isabel Valera

University of Saarland MPI Software Systems

December 3, 2021

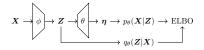
VAEs and heterogeneous data



æ

• • • • • • • • • • •

VAEs and heterogeneous data



$$p_{ heta}(oldsymbol{X}|\mathbf{z}) = \prod_{d=1}^{D} p_d(\mathbf{x}_d|\mathbf{z})$$

• • • • • • • • • • •

A. Javaloy, M. Meghdadi, and I. Valera

Boosting VAEs via MOO

December 3, 2021

æ

2/6

$$X \xrightarrow{\phi} \phi \xrightarrow{} Z \xrightarrow{\theta} \theta \xrightarrow{} \eta \xrightarrow{} p_{\theta}(X|Z) \xrightarrow{} \text{ELBO}$$

$$p_{\theta}(\boldsymbol{X}|\mathbf{z}) = \prod_{d=1}^{D} p_d(\mathbf{x}_d|\mathbf{z})$$

Image: A math a math

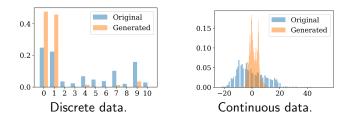
• Implicit assumption. We want to learn all features equally well.

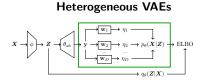
$$X \xrightarrow{\phi} \phi \xrightarrow{} Z \xrightarrow{-} \theta \xrightarrow{} \eta \xrightarrow{} p_{\theta}(X|Z) \xrightarrow{} \text{ELBO}$$

$$p_{\theta}(\boldsymbol{X}|\mathbf{z}) = \prod_{d=1}^{D} p_d(\mathbf{x}_d|\mathbf{z})$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Implicit assumption. We want to learn all features equally well.
- Problem. During training, VAEs prioritize some features over others.





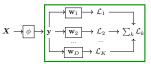
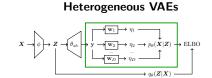
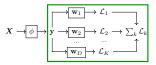


Image: A matrix



Want:Model all features equally well.Problem:Feature overlooking.

Multitask Learning

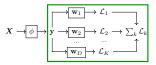


Learn all <u>tasks</u> equally well. Negative transfer.

< □ > < 同 >



Multitask Learning

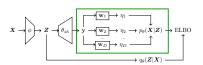


Learn all <u>tasks</u> equally well. Negative transfer. ϕ .

 w_1, w_2, \ldots, w_K .

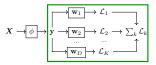
Image: A matrix

Exclusive:	$w_1, w_2, \ldots, w_K.$
Shared:	ϕ and $ heta_{sh}$.
Problem:	Feature overlooking.
Want:	Model all <u>features</u> equally well.



Heterogeneous VAEs

Multitask Learning



Learn all <u>tasks</u> equally well. Negative transfer. ϕ .

 $\mathbf{W}_1, \mathbf{W}_2, \ldots, \mathbf{W}_K$

Want:Model all features equally well.Problem:Feature overlooking.

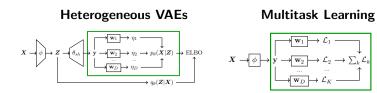
Shared: Exclusive: ϕ and θ_{sh} . w_1, w_2, \dots, w_K .

 $\nabla_{\phi} p_{\theta} \nabla_{p_{\theta}} \text{ELBO} =$

Updating ϕ :

$$= \nabla_{\phi} \mathbf{y} \underbrace{\left(\sum_{d} \nabla_{\mathbf{y}} \eta_{d} \nabla_{\eta_{d}} \boldsymbol{p}_{\theta}\right)}_{\text{feature overlooking}} \nabla_{\boldsymbol{p}_{\theta}} \text{ ELBO}$$

Tackling feature overlooking

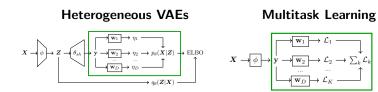


Conflicting gradients

Differences between gradient among tasks/features lead to poor gradient directions, and thus shared-parameters updates.

< < >>

Tackling feature overlooking

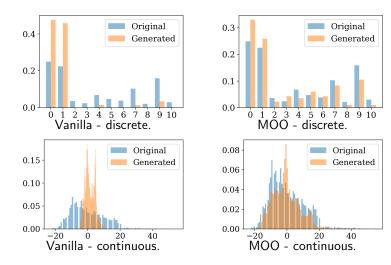


Conflicting gradients

Differences between gradient among tasks/features lead to poor gradient directions, and thus shared-parameters updates.

These conflicts are restricted to the green squares. We can leverage existing MTL solutions to alleviate feature overlooking in heterogeneous VAEs.

Qualitative results



(口)

- Despite their principled origins, VAEs are not different from other neural models.
- Similar assumptions = similar problems. We can leverage existing solutions.
- If properly trained, VAEs can be incredibly effective at modeling heterogeneous data.

Want to stay tuned? Follow us on ♥!

Paper at adrian.javaloy.com/uploads/movae/ymiw-paper.pdf.